Charge-Coupled Analog Computer Elements
and Their Application to Smart Image Sensors

A Dissertation
Presented to the Faculty of the Graduate School
of
Yale University
in Candidacy for the Degree of
Doctor of Philosophy

by
Eric Roy Fossum
May 1984
ABSTRACT

CHARGE-COUPLED ANALOG COMPUTER ELEMENTS
AND THEIR APPLICATION TO SMART IMAGE SENSORS

Eric Roy Fossum
Yale University
1984

Real-time machine vision in mobile robots requires pre-processing of images at speeds well in excess of one billion operations per second, depending on the resolution of the image plane. To obtain such high speed in a compact, light-weight, and low-power computing system, alternatives to the standard serial digital processor are currently being explored. The spatially parallel architecture, in which the inter-processor communication structure reflects the topology of the focal plane mosaic of elemental sensors, is organized in a way natural for image pre-processing. The most logical place for the processor array is the imaging focal plane. Such positioning avoids the serial encoding and transmission of the inherently parallel input data, but the available real-estate places a premium on processor simplicity and innovation.

In this dissertation, an analog processor based on the manipulation of discrete charge packets in a semiconductor is advocated. Such a processor shows promise for high density focal plane computing (more than 4000 processors/cm²). The work focuses on the basic building blocks of the charge-coupled computer, a charge packet differencer/replicator and a charge packet magnitude comparator. The former is implemented in a novel circuit in an inherently linear and compact way through the use of three-dimensional charge coupling. The prototype
circuit was fabricated and measured at Yale, and was shown to operate properly in a manner consistent with its analysis.

Also investigated in the course of this research was the bistable metal/tunnel-oxide/semiconductor (MTOS) junction. The application of this device as a charge packet magnitude comparator was explored by utilizing its hot electron impact ionization internal positive feedback mechanism. It was found that the physical computation time of this device is somewhat longer than was desired in the charge-coupled computer, though it actually performs well as a charge-packet threshold detector.

The control circuitry integrated with the MTOS junction provided a unique opportunity to investigate the internal charging and discharging currents of the thin oxide capacitor. Using a novel charge packet injection technique, the dynamic response of the junction was studied and a measure of the oxide hole transport current and hot tunneling electron induced impact ionization current was made as a function of oxide voltage. The MTOS junction can also be controlled in a steady state manner by utilizing a diode-controlled MOS inversion layer to pin the MTOS junction surface potential. A new voltage-controlled N-type negative resistance was discovered in the course of making basic device measurements. The mechanism of this negative resistance in the charge-coupled MTOS-PN junctions is explained.

The dissertation spans a spectrum from machine vision, through solid-state circuit design to semiconductor device physics. Parochial progress, such as the fabrication of sub-micron interelectrode gaps, suppression of dark current, and the fabrication of a 33 Å gate oxide enhancement mode MOSFET is also reported.
Machines and intelligence are mutually exclusive concepts, at least philosophically. Yet, no one can deny that a machine can be made to appear to be intelligent. Witness the rise of elaborate computer programs which appear to convert a bank of switches into a thinking machine. Indeed, as human technology grows, the definition of human intelligence becomes more elusive. Perhaps there is no such thing as human intelligence in the sense that it is presently and emotionally defined.

It is in this context that 'smart' sensors are pursued. Such sensors can be viewed in terms of an incremental step toward machine intelligence, or as a solution to a practical problem. (Maybe human 'smartness' is also a solution to some Darwinian practical problem.) The norm for approaching the smart sensor problem, which can be considered as reducing the entropy of sensed information, is to adapt a bank of switches for the specific information processing task. Unfortunately, few researchers consider the issue of whether the digital approach is truly optimal for the job. Machine vision is a good example of this.

At the risk of alienating the entire computer science community in one stroke, the following observation is put forth. The problem of entropy reduction of information can be mathematically expressed. It is rarely formulated in Boolean algebra. Yet, the engineering problem of implementing the formulation seems to be routinely solved in a digital
state space. The reasons are historically clear (reduction of total computational error) but philosophically puzzling. Computer scientists take this Boolean algebra based machine, and operate it with a human-esque communication language. It would seem more reasonable to first formulate the problem in a more natural mathematics (e.g. predicate calculus) and second, perform the engineering implementation in a way which more closely resembles the abstract information manipulation.

The thesis presented here pales in comparison to the aspirations of the above paragraph. Perhaps some small step to smart robot vision sensing has been achieved, but the thesis is really a discussion of solid-state circuitry design, fabrication, and measurement. To a lesser extent, it is also a study of solid-state physical phenomena. It has been an interesting investigation and has served well as an educational experience.

The investigation succeeded in converting ideas to practice (the essence of engineering) because of the support of many people. Some support was realized indirectly, such as that provided by Becky Friedkin, my patient wife. Some support was realized directly, such as the proficient and expedient typing of Arlene Vasso, and the graphic arts expertise of Sal Datillo. I would like to thank all those who have enabled me to sit here and write a preface to a Ph.D. dissertation. In particular, I would like to acknowledge:

My parents, who tended a garden with no visible sign of bearing fruit.

An anonymous public school official who in 1969 'pulled my name from a hat' to participate in a special program on Saturdays.

The staff at the Talcott Mt. Science Center who gave me my first taste of self education, especially Bill Danielson, George Atamian, and Donald LaSalle.

Sandy Stieber, who provided untold inspiration and a professional job.
Charles Miller, Harvey Picker and David Ahlgren and other faculty members at Trinity College who inspired me to finally 'try'.

Richard Barker and Tso-Ping Ma who provided for my professional growth at Yale.

Hans Maurer, Tony Funari, and Colin Whitney who provided for my professional growth at Hughes.

Members of the technical staff and support groups at Hughes who fabricated a test box, provided chip carriers, bonded the devices, photographed the chip and a hundred other things.

Members of the IC Facility at IBM Kingston who in spirit and deed tried to make the collaborative effort work.

My fellow graduate students at Yale who unselfishly gave their time so that I could go to California with chips to test, and particularly those of the Ma Barker gang whom I will always think of as family.

This work was also supported by a Yale University Fellowship (1979/1980) an IBM Fellowship (1980/1981), a Howard Hughes Ph.D. Fellowship (1981-1984) and a contract with the Hughes Aircraft Company’s Missile Systems Group (1982/1983).

Without the assistance of the individuals and institutions listed above, it is a certainty that this dissertation would not exist. To those above and those which I have erroneously omitted, I would also like to extend my sincere gratitude.

Finally, I would like to dedicate this dissertation to the person who pulls a dusty copy off a library shelf, or who views a yellowed microfiche, and wonders why someone might spend five years of their life to work on a trivial problem such as robot vision. After all, even children understand the basics of robotics...
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE AND ACKNOWLEDGMENTS</td>
<td>ii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. CHARGE-COUPLED COMPUTING</td>
<td>6</td>
</tr>
<tr>
<td>2.1 Introduction to Focal Plane Image Processing</td>
<td>6</td>
</tr>
<tr>
<td>2.2 Charge-Coupled Computer Architecture</td>
<td>12</td>
</tr>
<tr>
<td>2.3 Charge-Coupled Device Background</td>
<td>22</td>
</tr>
<tr>
<td>The Deep Depleted MOS Capacitor</td>
<td>23</td>
</tr>
<tr>
<td>Signal Charge Input</td>
<td>35</td>
</tr>
<tr>
<td>Charge Transfer</td>
<td>38</td>
</tr>
<tr>
<td>Signal Charge Output</td>
<td>40</td>
</tr>
<tr>
<td>III. FABRICATION OF PROTOTYPE CIRCUITS</td>
<td>44</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>44</td>
</tr>
<tr>
<td>3.2 Sub-Micron Gap Formation</td>
<td>46</td>
</tr>
<tr>
<td>3.3 Dark Current Reduction</td>
<td>66</td>
</tr>
<tr>
<td>Causes and Effects</td>
<td>56</td>
</tr>
<tr>
<td>Experimental Characterization of Dark Current</td>
<td>61</td>
</tr>
<tr>
<td>Dark Current Reduction Experiments</td>
<td>66</td>
</tr>
<tr>
<td>Summary of Dark Current Reduction Findings</td>
<td>74</td>
</tr>
<tr>
<td>3.4 Mask Making</td>
<td>79</td>
</tr>
<tr>
<td>3.5 Fabrication Process</td>
<td>85</td>
</tr>
<tr>
<td>3.6 Process Verification</td>
<td>100</td>
</tr>
</tbody>
</table>
IV. MTOS CHARGE PACKET THRESHOLD DETECTOR 107

4.1 Introduction ... 107

4.2 Review and Preview of MTOS Junction Device Physics...... 108

Energy Bands and Space Charge 109

Oxide Current Transport (Tunneling, etc.) 112

Semiconductor Current Transport 118

Kirchoff Analysis of the Inversion Layer (Q_{INV}) 119

Regimes of MTOS State Space Operation 122

MTOS State Space Diagram 126

Switching Time .. 132

Oxide Thickness Considerations 133

4.3 Experimental Device Layout and Fabrication 135

4.4 Charge Packet Threshold Detector Experiment 142

Operation ... 142

Experimental Results - Device Current 146

Experimental Results - Device Capacitance 160

Modelling of ON State Stabilization Currents 165

4.5 Steady State Hole Injection using a Diode-
Controlled Inversion Layer 168

Gate-Controlled Diode Theory 168

Diode-Controlled MOS Capacitor Experiment 171

Diode-Controlled MTOS Junction 173

N-Type Negative Resistance Caused by
Hot Electron Impact Ionization 178

4.6 Effect of Control Gate Voltage on PN Junction -
MTOS Junction Coupling .. 184

4.7 Pulsed Control Gate Switching of the MTOS Junction.... 197

4.8 Summary ... 202
V. CHARGE-PACKET DIFFERENCER CIRCUIT .. 207

5.1 Introduction ... 207
5.2 Theory of Operation .. 209
 Basic Operation .. 209
 Charge-Handling Capability 218
 Effect of Stray Capacitance 220
 Effect of PN Junction Leakage Current 222
 Effect of Dark Current 223
5.3 Device Layout and Fabrication 223
 Yale 8205 Layout ... 223
 Proposed Improved Layout 228
5.4 Experimental Results and Analysis 230
 Output Amplifier Calibration 230
 Charge Packet Replicator 235
 Charge Packet Differencer Diagnostic Procedure 238
 Charge Packet Differencer Performance Verification .. 240
 Linearity ... 249
 Noise and Dynamic Range 254
 Operating Speed .. 256
 Multiple Cycle Operation 258
5.5 Discussion .. 260
 Accuracy Error .. 260
 Operating Speed .. 262
 Effects of Scaling and Process Improvement 262
5.6 Summary and Conclusions 263

VI. SUMMARY AND CONCLUSION .. 265
LIST OF FIGURES

2.1-1 Schematic illustration of focal plane image processing.
2.2-1 Block diagram of the charge-coupled computer.
2.2-2 Tentative floor plan for the charge-coupled computer.
2.3-1 a. Charge distribution in an MOS capacitor
 b. Electric field distribution
 c. Electrostatic potential
2.3-2 Energy band diagram for an MOS capacitor in slight deep depletion.
2.3-3 Surface potential as a function of inversion layer charge normalized by $Q_{EQ} = C_{ox} (V_G - V_T)$.
2.3-4 Bucket model of relationship between surface potential and inversion layer charge.
2.3-5 Surface potential equilibration method of setting charge in a CCD
 a. Empty bucket is formed by applying biases.
 b. Bucket is filled by raising diode voltage to substrate potential.
 c. Diode is returned to reverse bias causing spilling of charge from surface.
 d. Spillway potential results in charge retained in metering well.
3.2-1 Sub-micron inter-electrode gap formation process.
 a. Photoresist patterned
 b. Overetch of aluminum results in undercut
 c. Second metallization
 d. Lift-off removes photoresist and metal cap
 e. Final metal patterning complete
3.2-2 SEM photographs showing gap formation process
 a. Photoresist overhang/aluminum undercut
 b. Second metallization leaves cavern structure
 c. Lift-off leaves clean gap structure ($\approx 1 \mu m$)

(Photographs by R. Wisnieff)
3.2-3 Simple model of etch process profiles

3.2-4 Measured gap width as a function of overetch time

3.2-5 SEM photographs showing (early) gaps
 a. Undercut profile suggesting etch anisotropy
 b. Top view showing enhanced etching along grain boundaries

(Photographs by A. Pooley)

3.2-6 a. First level (dashed border) and second level (solid border) mask patterns for metal electrodes
 b. Resultant electrode pattern (gap size exaggerated)

3.3-1 Experimental capacitance as a function of time in response to a five volt step bias.

3.4-1 10X reticles for Yale 8205 chip. Level IDs in lower right-hand corner are as follows:
 R: Registration
 P: Boron diffusion
 N: Channel stop diffusion
 G: Gate oxide windows
 T: Tunnel oxide windows
 C: Contact vias
 1: First level metal
 2: Second level metal
 (Note: Polarity reversal from final mask plates)

3.5-1 Yale 8205 process summary cross-sections
 a. Registration marks
 b. Borofilm diode formation
 c. Phosphorosilicafilm channel stop formation
 d. Gate oxide window and growth
 e. Tunnel oxide window and growth
 f. Contact via etch
 g. First level metal
 h. Final cross-section

3.5-2 Photograph of bonded chip
 (N. Ferguson, Hughes Aircraft Co.)

3.6-1 MOSFET characteristics
 a. Gate oxide (550 Å)
 b. Tunnel oxide (33 Å)

3.6-2 CCD input/output verification

4.2-1 MOS energy band diagram under flat-band conditions.
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2-2</td>
<td>Partial barrier transmission of an incident wave packet.</td>
<td>113</td>
</tr>
<tr>
<td>4.2-3</td>
<td>Distribution of tunneling electrons (After Lai 1979).</td>
<td>115</td>
</tr>
<tr>
<td>4.2-4</td>
<td>MTOS energy bands in the low current state.</td>
<td>124</td>
</tr>
<tr>
<td>4.2-5</td>
<td>MTOS energy bands in the high current state.</td>
<td>127</td>
</tr>
<tr>
<td>4.2-6</td>
<td>MTOS state space phase diagram.</td>
<td>129</td>
</tr>
<tr>
<td>4.3-1</td>
<td>Layout of MTOS charge packet threshold detector experiment. Interelectrode gap size is exaggerated.</td>
<td>136</td>
</tr>
<tr>
<td>4.3-2</td>
<td>Photograph of fabricated device structure for MTOS charge packet threshold detector experiment.</td>
<td>137</td>
</tr>
<tr>
<td>4.3-3</td>
<td>Cross-section of active channel of MTOS charge packet threshold detector experiment.</td>
<td>139</td>
</tr>
<tr>
<td>4.4-1</td>
<td>Schematic cross-section of active channel illustrating charge packet injection sequence.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Charge packet is formed using fill and spill technique.</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>b. Metering well voltage ramped to zero causing ejection of charge packet.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. MTOS junction switches into ON state.</td>
<td></td>
</tr>
<tr>
<td>4.4-2</td>
<td>Timing diagram for charge packet injection sequence. Typical value of Δt is 350 μsec.</td>
<td>145</td>
</tr>
<tr>
<td>4.4-3a</td>
<td>Transient MTOS device current as a function of time for various sizes of injected charge packets. Metering well voltage varied from 12 to 22 volts in one volt increments except between 18 and 21 volts where the increment is 0.2 volts. Waveform ripple is residual 60 Hz noise. MTOS junction biased at -3.45 volts.</td>
<td>147</td>
</tr>
<tr>
<td>4.4-3b</td>
<td>Schematic drawing of transient current of Fig. 4.4.3a with initial MTOS state regimes labeled.</td>
<td>148</td>
</tr>
<tr>
<td>4.4-4</td>
<td>Transient MTOS device current biased at -3.30 volts for various values of injected charge packet magnitude. Note the regime 8 behavior for large injected charge packets.</td>
<td>149</td>
</tr>
<tr>
<td>4.4-5</td>
<td>Transient MTOS device current biased at -3.50 volts as measured at t = 0^+ and t = 1200 msec as a function of metering well voltage.</td>
<td>151</td>
</tr>
<tr>
<td>4.4-6</td>
<td>Semilog plot of transient MTOS device current as measured at t = 0^+ as a function of normalized injected charge packet magnitude for two different devices biased at various voltages.</td>
<td>152</td>
</tr>
</tbody>
</table>
4.4-7 Differential time rate of change of initial transient device current and initial transient device capacitance as a function of metering well voltage. Device biased at -3.5 volts.

4.4-8 Time rate of change of inversion layer charge as a function of injected charge packet size. Also shown is the inferred impact ionization current.

4.4-9 Total impact ionization probability as a function of hot electron energy as measured experimentally and calculated theoretically (Drummond and Moll, 1971).

4.4-10 Transient MTOS device capacitance as measured at $t = 0^+$ as a function of metering well voltage, for various values of V_{TO} (-3.2, -3.3, -3.4, -3.5 volts).

4.4-11 Transient MTOS device capacitance as a function of time and metering well voltage.

4.4-12 MTOS device parameters as a function of surface potential. Solid curves are results of a computer model employing the zero current approximation. Dotted curve shows capacitance calculated using depletion approximation. Dashed curves show experimental capacitance measured using charge packet injection technique and steady state hole injection technique. Straight dashed lines highlight critical values of metastable state. $C(V_D)$ fitted using $\psi_s = -0.53$ volts. $C(Q_{inj})$ fitted using $\xi_{ST} = 4.4$ pF.

4.4-13 MTOS device current densities as a function of surface potential for device biased at -3.50 volts. J_{dev} is experimental total device current (electron tunneling current) C_{INV} are points transcribed from Fig. 4.4.8 and measure time rate of change of inversion layer charge. J_{inj} is lateral hole injection current measured from steady state measurement. J_{ij} is impact ionization current. J_{diff} and J_{rec} are the back diffusion and recombination currents respectively as obtained from computer model.

4.5-1 Energy bands of ideal gate-controlled diode structure. Dotted bands are for zero gate bias and solid bands are for inversion gate biases. In both cases the diode is grounded. Dashed line shows Fermi level. [After Grove and Fitzgerald].

4.5-2 MOS surface potential as a function of diode voltage as determined from diode-controlled MOS capacitor experiments for both the metering well (C_{MW}) and tunnel oxide device (C_{TO}).
4.5-3 MTOS device current and capacitance as a function of MTOS junction bias for various values of controlling diode voltage. Insets show biasing arrangement and enlarged portions of C-V and I-V characteristics. Dotted lines show isolated MTOS device ON characteristics.

4.5-4 MTOS device capacitance and substrate current as a function of controlling diode voltage for various values of MTOS junction bias. In order of increasing capacitance and current, junction bias ranges from -3.0 volts to -3.5 volts in 0.1 volt increments.

4.5-5 Semi-log plot of MTOS junction current as a function of tunnel oxide voltage as measured by diode-controlled MTOS junction technique. Data transcribed from Fig. 4.5.4.

4.5-6 Experimental set-up for measuring lateral injection current.

4.5-7 Negative resistance controlling diode current as a function of diode voltage for MTOS junction grounded to substrate and for MTOS junction biased at -3.50 volts. Dashed line shows difference in two currents and interpreted as lateral hole current.

4.5-8 Negative resistance load line analysis diagram showing bistable operating points of inset circuit.

4.6-1 Layout of MTOS junction – PN junction coupling experiment with intermediate control gate. Interelectrode gap exaggerated.

4.6-2 Substrate current as a function of control gate voltage for various values of MTOS junction bias.

4.6-3 Substrate current as a function of control gate voltage for various values of PN junction bias.

4.6-4 Substrate current as a function of PN junction bias for various values of control gate voltage.

4.6-5 Potential well-like diagrams for subthreshold control gate voltage switching of coupled MTOS junction and PN junction. See text.

4.6-6 PN junction current as a function of control gate voltage for various values of MTOS junction bias.

4.7-1 Pulsed control gate switching of MTOS junction using biased PN junction.

4.7-2 Potential well diagram illustrating preset MTOS junction surface potential experiment.
4.7-3 MTOS junction transient current as a function of time for various values of preset surface potential. MTOS junction bias applied at \(t = 0 \), and output transfer gate clamped off at \(t = 12 \) msec. Diode voltage increased from -0.6 volts to +0.2 volts in 0.1 volt increments. MTOS junction biased at -3.45 volts. Waveform ripple due to residual 60 Hz noise.

5.2-1 Schematic drawings of charge packet differencer circuit showing the three major phases of operation.

a. Precharge phase. Electrodes A and B are precharged to potential \(V_0 \) by pulsing \(V_{PCC} \).

b. Gate charge subtraction phase. Signal charge recombines with a portion of the negative gate charge altering the potential wells under electrodes A and B.

c. Charge packet formation phase. Input diode is pulsed creating charge packet \(Q_o \) in a surface potential equilibration manner (fill and spill).

5.2-2 Timing diagram for charge packet differencer operation. Basic cycle is

1. Precharge phase and prepare input charge packets.
2. Gate charge subtraction phase and differencer fill.
3. Differencer spill.
4. Transfer output charge packet.

Copy cycle is:

1. Reset output amplifier (optional) and differencer fill.
2. Differencer spill.
3. Transfer output charge packet.

5.3-1 Layout of fabricated experimental device showing input stage (A and B channels) and charge packet differencer. Interelectrode gap size exaggerated.

5.3-2 Photograph of fabricated device (7B20).

5.3-3 Proposed improved layout of charge packet differencer.

5.4-1 Measurements of source-follower configured output MOSFET for various load resistance.
5.4-2 Calibration of output charge packet sense amplifier by injection of charge packet from parallel channel. Measured current is ratio of injected charge packet to cycle period (one millisecond). Output signal of amplifier referenced to reset level.

5.4-3 Charge packet replicator operation compared to parallel channel input as discussed in text.

5.4-4 Ideal performance transfer characteristics of differencer circuit. Output gain calculated using experimentally observed values.

5.4-5 Transfer characteristic surface of experimental charge packet differencer circuit. Output signal referenced to reset level shifted by 0.8 volts.

5.4-6 Multiple exposure photographs showing actual output of charge packet differencer circuit as sensed by output amplifier.

a. Output as a function of channel A input charge packet. V_{WA} ramped from -8.5 volts to -3.5 volts left to right. V_{WB} stepped from -5.0 volts to -8.0 volts in -0.5 volt increments beginning from maximum response.

b. Output as a function of channel B input charge packet. V_{WB} ramped from -3.5 volts to -8.5 volts left to right. V_{WA} stepped from -8.0 volts to -5.0 volts in 0.5 volt increments beginning from maximum response.

5.4-7 Transfer characteristic surface of experimental charge packet differencer. Output signal referenced to reset level shifted by 0.6 volts.

5.4-8 Partitioning of actual transfer characteristic for non-linearity characterization. See text.

5.4-9 Output of charge packet differencer circuit as a function of B channel input for various values of fundamental clock period 5t.

5.4-10 Output of charge packet differencer circuit as a function of A channel input for sequential regeneration cycles. Re-generation cycle time was one millisecond.
<table>
<thead>
<tr>
<th>Index</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-1</td>
<td>Carrier densities in non-equilibrium MTOS junction space-charge region.</td>
<td>288</td>
</tr>
<tr>
<td>B-2</td>
<td>Drift current component of total current in non-equilibrium MTOS junction using zero current approximation.</td>
<td>289</td>
</tr>
<tr>
<td>B-3</td>
<td>Charge components in non-equilibrium MTOS junction.</td>
<td>291</td>
</tr>
<tr>
<td>C-1</td>
<td>Energy band diagram illustrating impact ionization.</td>
<td>297</td>
</tr>
<tr>
<td>C-3</td>
<td>Possible impact ionization process in silicon conserving energy and (k)-vector.</td>
<td>299</td>
</tr>
<tr>
<td>D-1</td>
<td>Schematic illustration of floating diffusion source-follower MOSFET charge packet output sense amplifier.</td>
<td>305</td>
</tr>
<tr>
<td>D-2</td>
<td>Layout of amplifier used in the Yale 8205 ch. p.</td>
<td>306</td>
</tr>
<tr>
<td>D-3</td>
<td>Photograph of actual amplifier tested.</td>
<td>307</td>
</tr>
<tr>
<td>E-1</td>
<td>Block diagram illustrating instrumentation set up.</td>
<td>316</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2-1</td>
<td>Some image pre-processing functions.</td>
<td>14</td>
</tr>
<tr>
<td>2.2-2</td>
<td>Sample charge-coupled computer program.</td>
<td>20</td>
</tr>
<tr>
<td>2.3-1</td>
<td>Sample values of MIS CCD quantities.</td>
<td>42</td>
</tr>
<tr>
<td>3.3-1</td>
<td>Summary of dark current reduction experiments.</td>
<td>76</td>
</tr>
<tr>
<td>3.4-1</td>
<td>HRP development process.</td>
<td>81</td>
</tr>
<tr>
<td>3.4-2</td>
<td>Reversal process.</td>
<td>83</td>
</tr>
<tr>
<td>3.5-1</td>
<td>Yale 8205 fabrication process.</td>
<td>92</td>
</tr>
<tr>
<td>4.8-1</td>
<td>Summary of charge packet threshold detector characteristics.</td>
<td>205</td>
</tr>
<tr>
<td>5.4-1</td>
<td>Differencer set-up voltages.</td>
<td>244</td>
</tr>
<tr>
<td>5.4-2</td>
<td>Linearity distortion.</td>
<td>253</td>
</tr>
</tbody>
</table>