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Abstract— The quanta image sensor (QIS) is a photon-
counting image sensor that has been implemented using
different electron devices, including impact ionization-
gain devices, such as the single-photon avalanche detec-
tors (SPADs), and low-capacitance, high conversion-gain
devices, such as modified CMOS image sensors (CIS) with
deep subelectronread noise and/or low noise readout signal
chains. This article primarily focuses on CIS QIS, but recent
progress of both types is addressed. Signal processing
progress, such as denoising, critical to improving apparent
signal-to-noise ratio, is also reviewed as an enabling coin-
novation.

Index Terms— CMOS image sensor (CIS), denoising,
image quality, low-light sensor, photon-counting image sen-
sor, quanta image sensor (QIS), subelectron read noise.

I. INTRODUCTION

COUNTING every photon is as sensitive as physics
presently allows in measuring light. To count photons

incident on the faceplate, optical losses must be minimized,
detector quantum and collection efficiencies must be max-
imized, and detector dead times minimized. Measurement
of ultralow quanta (light) flux using single photomultiplier
tube (PMT) detector photon counting was suggested as early
as the 1960s, e.g., [1]–[3]. A digital photon-counting image
sensor using APDs was suggested by Nippon Hōsō Kyōkai
(NHK) [4]. In 1996, a hybridized photon-counting image
sensor readout integrated circuit (ROIC) was investigated by
Jet Propulsion Laboratory (JPL) [5] and the first solid-state
single-photon avalanche detector (SPAD) was introduced [6].
In 2005, a new imaging paradigm based on photon counting
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was described by Fossum [7] that considered a future pixel
pitch of 0.5 μm or less and very limited full-well capacity
(FWC). A similar concept was proposed again in 2009 by
École polytechnique fédérale de Lausanne (EPFL) [8]. Such
a device is now often referred to as a quanta image sensor
(QIS) [9].

Various photon-counting image sensors were reported in a
special issue of Sensors [10]. Most photon-counting image
sensors are actually photoelectron-counting devices, with
reflection and quantum efficiency (QE) loss, carrier collection
loss, and detector dead time presumed to be acceptable, but
not perfect. The detection of single electrons with deep sub-
electron input-referred read noise (DSERN) has enabled the
possibility of room-temperature megapixel photon-counting
image sensors over the past ten years, with the assumption of
high QE, or high photon-detection efficiency, which takes into
account detector dead time. To achieve DSERN, two primary
methods are used. The first is carrier-gain through the use of
high electric field impact ionization either in avalanche diodes
or through repeated high clock voltage charge transfer in an
“impactron” [11] or electron multiplying (EM) charge-coupled
device (CCD) [12]. The second method is the use of charge
transfer devices such as a CCD or CMOS image sensor (CIS)
with high conversion gain (CG) achieved through ultralow
sense node capacitance and/or low noise readout electronics.
The required read noise was suggested by Teranishi in 2011 to
be less than 0.3e− rms [13], [14] and later reduced to 0.15e−
rms in 2013 [15]. SPAD pixels typically achieve DSERN with
ease. The first successful CIS-type pixel to achieve DSERN
and demonstrate electron quantization was reported in 2015
[16], [17]. Each approach has advantages and disadvantages.

The purpose of this review article is to provide a useful
overview and digest of progress in QIS realization, and point-
ers to the literature that has developed in this field. The article
contains three major sections. First is a general discussion
of the QIS and its imaging performance. QIS devices have
been implemented using CIS-type principles and technology
(referred to as CIS QIS) and SPAD devices (referred to as
SPAD QIS). A brief review of CIS QIS and SPAD QIS
devices will be presented along with thoughts on where each
technology may be going.

Section II discusses the recent advances in ultralow noise
imaging devices that can operate as CIS-QIS but which also
retain legacy advantages of CIS devices. Such devices have
benefitted from the technology developed for CIS QIS.

Photon-counting image sensors like the QIS are often oper-
ated in low quanta flux environments where photon shot noise
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Fig. 1. QIS concept showing spatial distribution of binary jot outputs
(left), expanded view of jot output bit planes at different time slices
(center), and gray-scale image pixels (right) formed from spatio-temporal
neighborhoods of jots.

limits the detection of signal-to-noise ratio (SNR) in the range
0 < SNR < 10. Computational imaging approaches have
been developed to improve apparent image quality through
algorithmic and machine learning-based denoising, motion
deblurring, and SNR enhancement of moving objects, and
make these devices useful for machine vision and consumer
use in low quanta flux regimes. Progress in this area is
reviewed in Section III.

QIS devices will find applications where imaging in ultralow
light is essential. These applications include security, night
vision, space science, life sciences, biotech, quantum com-
puting, aerospace, defense, and possibly automotive and con-
sumer smartphones.

II. QIS CONCEPT

A. QIS Imaging Performance (Theoretical)

The QIS consists of an array of specialized pixels referred
to as jots that are essentially binary in nature (indicating
the arrival of at least one photoelectron, or not.) The QIS
was originally envisioned to consist of millions or billions
of small-pitch, low FWC jots readout at high frame rates,
and thus very high bit rates. The concept originated when
contemplating a future image sensor scaled to small pixel pitch
and low FWC [7]. Image pixels are created from a local spatio-
temporal ensemble of jot outputs (see Fig. 1) that are logically
“zero” (no photoelectron) or “one” (at least one photoelectron).
Bit density (D) is the number of logic “ones” divided by the
total number of bits readout. It could be for a single jot readout
many times (e.g., many frames) or a group of jots readout
for one or more frames. The image sensor performance of
QIS devices was analyzed by Fossum [15] for the expected
value of D as a function of the average number of photons
or photoelectrons that arrive at the jot during the exposure
period, called the quanta exposure (H ), the input-referred
SNRH , the dynamic range (DR), the bit error rate (BER)
as a function of read noise, and other properties. In general,
for H �1, the performance is linear, but then approaching
H = 1, the response becomes sublinear with a substantial
overexposure latitude. This nonlinearity is fundamental and
due to the statistical arrival of photons that are well described
by the Poisson distribution probability mass function, which
is the underlying cause of photon shot noise in image capture.

Plotting D-log H yields an S-shaped curve as illustrated
in Fig. 2. The S-shaped D-log H curve has been known
since 1890 [18] where, in this case, D is grain density in
developed photographic plates, and H is the light exposure.

Fig. 2. Bit density (D) as a function of quanta exposure (H) calculated for
a 1bQIS for different input-referred read noise levels. Adapted from [20].

It was observed in a time before the quantum of light, the
photon, was described by Planck and Einstein in the early
1900s. In fact, the same basic Poisson statistics are behind the
D-log H characteristics of Hurter and Driffield, and those of
the QIS.

The bit density, noise and SNR predicted by the 2013 QIS
model was first experimentally verified using a SPAD QIS in
2015 [19]. Measurement of the D–H characteristic can be
used to estimate read noise and quantizer thresholds in CIS
QIS devices [20], [21].

The binary QIS concept was expanded to include low bit-
depth output—i.e., effective FWC greater than unity. The
binary QIS is now referred to as a 1bQIS and the latter as
a multibit QIS, or mbQIS. In the mbQIS, the low bit-depth
digital value is equal to the number of electrons readout.
Multibit quantizers can be programmable to trade power and
read out speed with bit depth and concomitant nonlinearity,
e.g., [16], [22], [23], [24]. This 1–7b photon number resolution
capability differentiates mbQIS from higher read noise and
higher bit resolution (∼10–14b) regular CIS devices. However,
if anything, this differentiation has become blurred as regular
CIS devices have emerged with DSERN, as described in
Section II-B. Photon-counting error rates in 1bQIS and mbQIS
were analyzed in 2016 [25].

It is noted that while the QIS is a binary-output image
sensor, it differs from some binary sensors that have appeared
in the literature over the years, wherein the threshold for
triggering a change in output value typically represents a few
or perhaps many photons, e.g., [8], [26].

B. Implementation: CIS QIS and SPAD QIS

In principle, any device that can detect photoelectrons with
less than 0.15–0.30e− rms read noise to achieve low BER (i.e.,
BER < 0.0005–0.005 bit-errors/read) can be used as a QIS
device. For example, a cooled EMCCD [12] can operate as a
1bQIS, albeit with a slower readout rate (but not so well as a
mbQIS due to gain noise), and a cooled CCD with “skipper
readout” (many nondestructive reads of a pixel) can also be
used as 1bQIS or mbQIS, albeit with an even lower frame
rate [27].

Two major approaches seem promising at this time for
room temperature (RT) application. The first is CMOS image
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TABLE I
EXAMPLES OF THE REPORTED QUANTA IMAGE SENSOR (QIS) DEVICES AND THEIR CHARACTERISTICS. (BSI = BACKSIDE ILLUMINATION,

LV = LOW VOLTAGE, FPS = FRAMES PER SECOND, RT DCR = ROOM TEMPERATURE DARK COUNT RATE,
QE = QUANTUM EFFICIENCY, AND PDE = PHOTON DETECTION EFFICIENCY)

sensor-based QIS (CIS QIS) developed at Dartmouth since
2011, and the second is a SPAD-based jot device (SPAD QIS).
The selected example devices from the literature are presented
in Table I.

1) CIS QIS: The CIS QIS approach requires a pixel with
high CG and/or low input-referred read noise, and a quantizer
circuit to convert the analog-sensed voltage signal to a digital
value (one or more bits in depth, corresponding to the electron
number). The first 1 kpix CIS QIS was reported in 2015
[17]. A 1 Mpix 3D-stacked-backside illumination (BSI)-CIS
QIS was reported in 2017 [28] with 1.1 μm pixel pitch,
1 kfps frame rate, 17.6 mW power dissipation, 0.21e− rms
avg read noise, and 0.2e−/s dark count rate. In fact, 20 differ-
ent 1 Mpix QIS devices with varying designs were integrated
on a single chip so this might be considered as a 20 Mpix
QIS.

The advantages of the CIS QIS approach are small pixels
(e.g., � 1 μm pitch), high resolution (e.g., >100 Mpixels),
very high photon detection efficiency (PDE), relatively low
power, low electric field strengths, low DCR, photon number
resolution (multibit QIS), and likely high manufacturing yield
and lower cost for a given resolution. An indirect advan-
tage is leverage from the advancement of regular CIS pixel
technology and shrink, requiring less unique detector device
engineering from generation to generation.

Drawbacks to the CIS QIS are primarily in control of
the quantizer threshold voltage(s) across the sensor. Reduc-
tion in read noise and/or increased CG will ameliorate this
drawback, as would self-calibration. Several techniques have
been developed to characterize read noise and quantizer
threshold [20], [29], [30].

QIS technology is being applied to achieve DSERN perfor-
mance in CIS devices and enable ultralow-light image capture
capability along with high-DR (HDR) and other features found
in commercial and consumer CIS devices [31], [32].

2) SPAD QIS: The SPAD QIS, used to first verify QIS
imaging performance predictions, has made strong progress
recently. In 2014, a 77 kpix SPAD QIS was reported by the
Edinburgh and STMicroelectronics (ST) Micro [19], [33], [34]
and a 65 kpix SPAD QIS was published by EPFL [35] with
8 and 24 μm pixel pitches, and 5.14 and 156 kfps frame rates,
respectively. In 2015, Massachusetts Institute of Technology
(MIT) Lincoln Labs reported a 65 kpix SPAD QIS with 25 μm
pixel pitch and 8 kfps frame rate [36]. The first BSI-stacked
mb-QIS with 7.83 μm pitch and 15 kpixels was reported in
2016 by Edinburgh and ST Micro [37].

By 2019, a 1/4 Mpix SPAD QIS was reported [38] as well
as an improved 3-D BSI-stacked SPAD QIS [39]. A variation
in a SPAD QIS (160 kpix) was presented by Panasonic using
a vertical avalanche photodiode [40].

In 2020, the first 1 Mpixel SPAD QIS was reported (actually
2 × 0.5 Mpixel arrays) by a Canon/EPFL collaboration [41].
The SPAD QIS had a 9.4 μm pixel pitch with a 24 kfps
frame rate with power dissipation of up to 535 mW for
0.5 Mpixel readout. Canon further progressed the technology
to achieve 3.2 Mpix with a 6.39 μm pixel pitch and a
60 fps frame rate with DCR and PDE approaching CIS QIS
levels using a 3-D-stacked BSI process. This mbQIS has an
11b pixel-parallel digital counter in the bottom tier to allow
photon number resolution and HDR. Power dissipation was
not reported [42]. A SPAD QIS with a pixel-parallel digital
counter, (42.2 kpixels, 12.24 μm pixel pitch, and 60–250 fps)
was reported by Sony at about the same time [43]. A novel 1-
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T SPAD QIS test array (200 pixels, 7 μm pitch) with a single
access transistor to the pixel was presented by Fondazione
Bruno Kessler (FBK) [44].

The primary advantage of SPAD QIS results from the nearly
instantaneous and large carrier-gain provided by the avalanche
photodiode breakdown that is triggered by a photoelectron.
The voltage pulse it creates can be used to time-stamp photon
arrival permitting time-of-flight measurement. The gain can
be turned “off” to provide a gating function. Once triggered,
the avalanche feedback process results in no apparent read
noise. The lack of read noise is usually balanced by lower
PDE which relates to photoelectrons triggering the avalanche
feedback process, and thus sometimes photoelectrons become
lost and uncounted.

The dual-mode operability of SPAD QIS to gate and record
photon arrival times, as well as provided QIS-mode imaging,
is a strong potential advantage of SPAD QIS compared to
present-day CIS QIS but can result in a larger pixel pitch.

The use of high internal electric fields needed to trigger
avalanche and high gain is a weakness of SPADs, resulting
in the need to isolate pixels, in turn leading to larger pixel
pitches. The higher electric fields can exacerbate DCRs and
potentially impact device yield. Die cost is a function of pixel
size, resolution, and yield, so at the current time, SPAD QIS
is expected to be more costly to manufacture than CIS QIS.

Power dissipation at higher photon count rates can cause
large CV 2 f power dissipation in the SPAD array (e.g.,
1–10 W), which can exceed that of the readout circuits, due
to high bias voltages and avalanche currents [45] that must
recharge the full pixel capacitance with each photon arrival.

While the digital readout layer shrink will track digital
circuit technology node improvement, pixel shrink at the
SPAD layer may be more difficult to achieve and there may
be little leverage from regular CIS technology improvements
in terms of shrink aside from 3-D BSI stacking. However,
earlier work in nano-sized APDs in 2007 may guide future
SPAD shrink [46] and the minimum SPAD pixel size reported
so far is 3 μm [47]. Scaling laws for SPADs were suggested
in 2021 [48].

III. ACHIEVING DEEP-SUBELECTRON READ NOISE

In recent years, a significant amount of research effort has
been spent on the reduction of read noise, for the development
of QIS and the improvement of low-light imaging performance
in CIS. Although there are a variety of approaches being
explored for reducing the read noise, they can be summarized
into two main categories, improving the CG of the pixel and
reducing the voltage temporal noise of the in-pixel source
follower (SF).

The improvement of pixel CG was realized in two ways:
1) reducing the floating diffusion (FD) capacitance and
2) replacing the in-pixel SF with high-gain amplifiers. Addi-
tionally, the reduction of the pixel SF temporal noise was
demonstrated with buried-channel SFs and pMOS-based SFs.
The correlated multiple sampling (CMS) is commonly used
with other techniques to further lower the read noise.

The advancement of the CMOS manufacturing process also
contributes to the reduction of read noise. The subelectron read
noise performance was reported in [49] and [50] with standard

Fig. 3. Single-pixel PCH with 0.12e− rms read noise measured at RT,
reported in [32].

Fig. 4. Read noise and FD CG performance of the selective recent
CIS and QIS. The dashed reference curves show the input-referred read
noise in voltage (µV rms).

CIS devices fabricated in a 45 nm standard CIS process and a
typical pixel CG of 110–120 μV/e−. The voltage read noise
of these devices is reduced to about 100 μV rms without CMS
and 70 μV rms with CMS.

The read noise performance of the recently published
low-noise CIS is summarized in Table II. Among these listed
results, the lowest input-referred read noise was reported
in [32] by Ma. Read noise of 0.19e− rms was achieved in a
16.7 Mpix CIS QIS with 1.1 μm pixels. This record-low read
noise was realized with a high CG of 340 μV/e−, enabled by
the pump-gate pixel structure. As shown in Fig. 3, a photon-
counting histogram (PCH) with 0.12e− rms read noise is
reported in this work. The discrete photo-electron peaks in the
histogram are well aligned with the Poisson–Gaussian model,
which demonstrates the reliable photon-counting capability of
the sensor. A scatter plot of the read noise of these sensors vs.
FD CG is shown in Fig. 4. The dashed reference curves show
the input-referred read noise in voltage (μV rms). Without
considering the difference of the FD CG, the lowest voltage
read noise (∼25 μV rms) was reported in Ge [51] and
Lotto [52]. The reduction of voltage read noise was realized
with in-pixel non-SF amplifiers with a significantly higher
voltage gain. Subelectron read noise was also demonstrated
with pMOS-based SF and buried-channel SF [53]–[57]. Both
devices demonstrated effective noise reduction compared to
the conventional nMOS-based surface-channel SF: ∼80 μV
rms voltage read noise (pMOS) without CMS and 45 μV rms
voltage read noise (buried-channel nMOS) with CMS.

These read noise reduction techniques are discussed in more
detail in the sections below.
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TABLE II
SUMMARY OF THE READ NOISE PERFORMANCE

OF THE SELECTIVE RECENT CIS AND QIS

A. Small FD Capacitance

High pixel CG is demonstrated in multiple works with sig-
nificantly reduced FD capacitance [17], [28], [31], [32], [55],
[58]–[62]. The capacitance of the FD node in a standard
CIS pixel includes a few components: 1) FD p-n junction
capacitance; 2) FD to transfer gate (TG) overlap capacitance;
3) FD to reset gate (RG) overlap capacitance; 4) SF gate
capacitance; and 5) intermetal capacitance. As the fabrication
process advances, the gate oxide becomes thinner and the
capacitance components 2)–4) increase proportionally. In the
pixels with shared readout architecture [63], the FD node is
coupled to multiple TGs, which proportionally increases the
FD-TG overlap capacitance.

The FD total capacitance can be lowered by reducing one or
multiple of these capacitance components. A pump-gate pixel
structure was first reported [64] by Ma for the reduction or
elimination of the FD-TG overlap capacitance with a distal
FD. As shown in Fig. 5, a three-step electrostatic potential
profile including a virtual-phase region is created in the
pump-gate device to enable a complete charge transfer from
the storage well (SW) to the distal FD node. This device was
first fabricated [17] and 426 μV/e− CG was demonstrated in
1.4 μm pixels, which is equivalent to a total FD capacitance of
only 0.38 fF. In this work, DSERN (0.28e− rms) was realized
for the first time with CIS pixels due to the high CG and its

Fig. 5. Pump-gate pixel structure reported in [64].

PCH demonstrated photon-counting capability. The pump-gate
device was further improved [28], [31], [32] and recently
implemented in commercial QIS products [65]. Despite the
ultrasmall FD capacitance, good interpixel uniformity and low
photon-response nonuniformity (PRNU) (∼1%) are realized in
multimega-pixel HDR QIS devices [32].

New pixel structures were also introduced to reduce other
FD capacitance components. In [28], [58], [59], and [66],
the reset transistor was replaced with a gateless reset diode,
often termed “punchthrough reset (PTR),” to eliminate the FD-
RG overlap capacitance. With the PTR diode, the FD node
is reset by increasing the positive bias voltage of the reset
drain (RD) node. As shown in Fig. 6, the higher bias increases
the depletion width surrounding the RD node and lowers the
potential barrier between the FD-RD junction, which allows
the electron current to flow from the FD to the RD. With
the PTR, a higher supply voltage is needed to achieve an
equivalently high FD reset voltage to preserve the FD voltage
swing and the DR. This requires an additional positive charge
pump or other on-chip high-voltage generators and increases
the complexity of the sensor. Hence, a bootstrapping operation
was introduced in [59] to increase the FD reset voltage in the
PTR by manipulating the FD capacitance before and after the
reset operation, without increasing the bias voltage on the RD
node.

The improvement of CG was also reported in the stan-
dard CIS pixels with mild implant modifications. In [60],
optimized n+ and lightly doped drain (LDD) implantation
conditions were applied to the FD and the SF drain with
lowered dose/energy to reduce the FD junction and the SF gate
capacitance. A CG of 240 μV/e− was demonstrated with these
modifications, which is equivalent to 0.67 fF FD capacitance.

Novel SF devices are also explored to reduce the SF gate
capacitance. A JFET-based pixel SF was proposed in [67]. This
is a p-channel JFET SF created in the pixels with implanta-
tions. The FD node functions as both the sense node and the
gate of the JFET. The JFET is biased with a constant current
source, and the output voltage follows the FD voltage when the
JFET is biased in the saturation region. The characterization
results of this device are reported in [68], and an extremely
high CG of 540 μV/e− was measured from some pixels, which
is equivalent to a FD capacitance of only 0.3 fF. However,
a large across-device variation was also observed, likely due
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Fig. 6. Gateless reset diode reported in [28].

Fig. 7. Pixel-level common-source amplifier with a negative feedback
and self-biased reset method, in reset configuration (left) and amplifica-
tion configuration (right), reported in [52].

to the nonuniformity of the doping concentration of the JFET
across the pixel array.

B. Non-SF High CG Pixels

Another interesting approach to enable high CG in
CIS-based pixels is to replace the pixel SF with other ampli-
fiers with a higher voltage gain. In [52], the pixel SF is
replaced with a pixel-level common-source amplifier with
column-wise load resistors. A nominal voltage gain of 10 V/V
and 300 μV/e− CG on the column output node were realized
with this open-loop configuration. This yields a relatively low
FD-referred CG of 30 μV/e−. The correlated double sampling
(CDS) operation was used to cancel the pixel-to-pixel varia-
tions of the amplifier offset induced by the mismatch of the
threshold voltage of the common-source transistors. A self-
biased reset method with negative feedback (Fig. 7) was used
to compensate for the variations of the pixels’ linear output
swing. A 2.5% PRNU was realized with these compensation
schemes, which is still higher than the typical performance of
SF-based CIS pixels but remarkably low for pixels with open-
loop amplifiers. The sensor achieved 0.86e− rms read noise.
Considering the relatively low CG on the FD node, the input-
referred voltage noise achieved with this approach is as low
as 25.8 μV rms, which is significantly lower than the voltage
noise of the SF-based pixels.

A similar pixel-level voltage amplification architecture was
also reported in [51] and [69] with an additional column-level

Fig. 8. In-pixel differential common-source amplifier, reported in [70].

sinc-type low-pass filter to further reduce the voltage noise.
A minimum read noise of 0.31e− rms and peak read noise
of 0.42e− rms were reported. However, the sensors suffer
from large pixel-to-pixel CG variations (e.g., 240–2200 μV/e−
in [69]), which may limit the implementation of this technique
in the applications that have strict requirements for PRNU.

With a slightly different approach, an in-pixel differential
common-source amplifier was proposed in [70]. As shown
in Fig. 8, the differential common-source amplifier is formed
with a readout pixel and a reference pixel, providing a nominal
voltage gain of about 7.5 V/V and a column-referred CG
of 560 μV/e−. The reference nodes, COM and VSL_REF,
are connected in parallel among thousands of pixels that
are simultaneously readout, which significantly increase the
transistor size and reduce the temporal noise from the biasing
transistors. This work realized 0.50e− rms read noise and
an improved PRNU of 2.5% compared to the single-ended
configuration used in [51] and [69], which suggests better
uniformity of the CG across the pixels.

C. SF Temporal Noise

In the SF-based CIS pixels, the temporal noise from the SF
is usually the dominating noise source. The temporal noise
in an SF device consists of thermal noise, 1/f noise, and
random telegraph noise (RTN). Thermal noise is present in
all electrical circuits, and its cause is well understood to
be the thermal fluctuation of the charge carriers inside the
electrical conductor [71]. Similarly, 1/f noise is present in
almost all the electrical circuits. Its root cause, although has
been extensively studied, is still largely debatable [72]–[80].
The popular theories include the fluctuation of the number of
charge carriers in the transistor channel and the fluctuation
of the mobility of the charge carriers. However, none of
the models managed to explain all the experimental results.
RTN is often present in a small portion of a large pixel
array. The percentage of the RTN pixels can be lower than
100 ppm in a modern CIS. However, because of its high noise
magnitude and trimodal noise signature, the RTN pixels are
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usually shown in the low-light images as “blinking” pixels
and have strong degradation to the image quality. The RTN
in CIS is well known to be linked to the trapping/emission
events of the defects-induced energy states inside the pixels,
especially inside the Si–gate oxide interface in the SF channel,
e.g., [81]–[93]. Other RTN sources have also been observed
in CIS [83], [84], [93], such as the photodiode dark current
induced RTN and the gate-induced drain leakage (GIDL)-
induced RTN.

The use of a “buried channel” was first introduced in
buried-channel charge-coupled devices (BCCDs) to reduce
the interaction between the charge carrier and interface traps,
thus improving charge transfer efficiency [94]. This concept
was later expanded to the in-pixel SF devices to reduce the
RTN and 1/f noise [56], [57], [85], [95]. The buried-channel
SF (BSF) reported in [95] consists of a thin n-type channel
located near the Si–SiO2 interface and between the n+ doped
source and drain. Because of the n-type buried-channel doping,
this device has a negative threshold voltage. When the device
is biased in the saturation region, the negative voltage across
the gate and the channel creates a potential barrier near the
Si–SiO2 interface with a barrier height more than several kT/q,
which protects the charge carriers in the channel from the
interface traps. In [95], a 50% read noise reduction compared
to the surface-channel SFs with the same size and 205 μV rms
input-referred read noise were reported. The effective noise
reduction from the BSF was confirmed in [85], in which a 5×
noise reduction at the 99.99% percentile and a 90× reduction
of the RTN quantity compared to the surface-channel SFs were
reported.

Additionally, reduction in 1/f noise and RTN was demon-
strated with pMOS SF in multiple works [53]–[55], [96]–[99].
The lower noise of pMOS can be explained by the lower
active trap density in pMOS because of the 10–20 times
heavier effective masses of a hole in the oxide than that of
an electron and a higher potential barrier for a hole to tunnel
into SiO2 [75], [100]. The pMOS SF can be implemented in
CIS pixels with a hole-based p-type process [97]–[99], or more
commonly in the modern CIS, with an in-pixel n-well made
with implantations to host the pMOS SF [53]–[55], [101].
However, the n-well will inevitably increase the pixel size
and reduce the fill factor. In [53], a thin-oxide pMOS SF was
implemented and 0.48e− rms input-referred read noise was
realized, which is equivalent to 76.8 μV rms read noise in
the voltage domain. This work was expanded in [55], and the
input-referred read noise was further improved to 0.32e− rms
with 250 μV/e− CG and CMS readout. In addition, in the
pMOS SF reported in [101], a bulk-to-source connection was
made to compensate for the body effect and improve the
voltage gain of the SF.

As both 1/f noise and RTN are known to be inversely
proportional to the gate size of the SF [79], [80], [91], [96],
a larger SF size is desirable for the reduction of SF temporal
noise. However, a larger SF also increases the capacitance on
the FD node and reduces the CG. This tradeoff is discussed
in [28] and [102]. Recently, a multigate SF was introduced as
a possible solution to overcome this tradeoff with promising
preliminary results [103].

Fig. 9. Example implementation of CMS operation in (a) digital
domain [114] and (b) analog domain [112].

D. CMS and Noise Filtering

The CDS readout is commonly used to in modern CIS
to eliminate the FD reset kTC noise and reduce the SF
thermal noise and 1/f noise [104]. As an expansion of
CDS, CMS readout is often used to further reduce the
read noise [17], [28], [31], [32], [49], [55], [57]–[59],
[61], [70], [105]–[115]. With CMS, the pixel reset and signal
voltage levels are sampled multiple times and the averages
are subtracted. Hence, the pixel reset noise can be canceled
through subtraction, just like CDS, and the thermal noise
and 1/f noise can be further reduced with averaging. The
CMS readout has been implemented in CIS in both digital
and analog domains. Examples of the digital and analog
implementation are shown in Fig. 9.

Compared to analog CMS, digital CMS requires a larger
number of analog-to-digital converter (ADC) conversions,
which results in a reduced frame rate and increased power con-
sumption. The analog implementation is more time and power
efficient; however, it is usually less efficient in noise reduction
because of the additional kTC noise in the sample-and-hold
circuitry. Novel circuit architectures are actively explored to
overcome this tradeoff. For example, in [49] and [108], a
selective digital CMS method was used to shorten the ADC
conversion time needed for the multiple sampling. With this
architecture, the pixel output is sampled simultaneously by a
full-range ramp for large signal under strong illumination and
a multiple sampling short ramp for small signal under dark
conditions. This approach reduces the readout time needed for
digital CMS while preserving the noise reduction efficiency,
but it introduces additional complexity to the per-column ADC
and the signal processing, as well as the chip area and power
consumption.

The theoretical read reduction from CMS is as fol-
lows: σCMS = σCDS/

√
N , where σCMS and σCDS are the

read noise with CMS and CDS, respectively; and N is
the number of CMS cycles. However, the noise reduc-
tion observed in the experimental results often show lower
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Fig. 10. Measured read noise versus number of CMS cycles (a) from [32]
and (b) from [114].

efficiency than the theoretical model, especially with a large
N (Fig. 10) [31], [32], [112], [114]. This phenomenon can be
explained by lower frequency 1/f noise and the accumulation
of the dark current on the FD node as the sampling time
increases. As discussed in [115], a skipper-type of CMS
operation will be the most efficient for the read noise reduc-
tion [116]–[118], as the effective sampling time can be kept
short for each pair of the reset and signal samples to cancel the
low-frequency noise and the accumulation of FD dark current.
However, this technique requires a floating gate or similar
types of readout architecture in the pixels, which reduces the
CG on the FD node and increases the complexity of the pixel
structure.

The reduction of read noise has also been demonstrated with
other noise filtering methods by limiting the noise bandwidth
of the readout circuit. A faster CDS operation with a shorter
�t between the two samples can effectively reduce the read
noise [88], [119], and a similar reduction can be realized with a
lower bias current of the pixel SF. However, both techniques
have limitations with high-speed operation under high-light
conditions when a large signal swing and fast settling time
are needed.

E. Superior Low-Light Imaging With DSERN

Reducing read noise from 1e− rms to DSERN levels brings
somewhat surprising improvements to the ultralow-light imag-
ing performance with CIS-based multibit QIS. As shown in
Fig. 11, a CIS QIS sensor is compared with two industry-
leading CISs for security and cellphone applications under
ultralow-light conditions (10 and 128 mlux) with the same

exposure time and lens configurations. Despite the signifi-
cantly smaller pixel size, the QIS provides remarkably better
SNR and image quality, due to the ultralow read noise.

IV. SIGNAL PROCESSING FOR QIS

Data captured by a QIS is a three-dimensional space-time
volume where each entry is a 1-bit or multibit digital number.
Since in principle the jot size can be small and the temporal
response can be fast, the binary outputs produced by the jots
can be seen as repeated but independent measurements of the
incident photon flux. A schematic of this image formation
process is shown in Fig. 12. The process is a combination
of color selection, photon arrival, noise injection, and quanti-
zation, among other sensor level modeling.

At the very basic level, the mathematical model of the
measured jot value Y can be described by the following
equation:

Y = ADC
{
CFA

{
Poisson(H + Hdark) + Gauss

(
0, σ 2)}}

where H is the quanta exposure, Hdark is the dark current,
and σ is the read noise standard deviation. The sum of the
Poisson random variable and the additive Gaussian random
variable accounts for the photon arrivals and the read noise,
respectively.

A color filter array (CFA) is applied to the measurement
to give color, and an ADC is used to convert the voltage to
digital bits. Assuming that the underlying exposure H does
not change rapidly over space and time, the random variable
Y is sampled repeatedly to produce the observed data.

Vetterli and colleagues at EPFL [8], [121], [122] had a
precise abstraction of QIS, referring to it as an oversam-
pling device because the information is embedded in the
densely sampled measurements. The nonlinearity of the image
formation makes the statistical properties of the data less
straightforward compared to CIS [15], [123]–[125], and thus
the signal extraction from the raw data to an actual image
poses new challenges.

The rest of this section will describe the signal processing
aspects of QIS. The mathematical model presented here is one
level above the device modeling. What this means is that the
model is applicable whenever the image formation follows a
Poisson–Gaussian distribution, subject to different parameters,
e.g., CIS QIS has a lower dark current than that of SPAD
QIS. Because of the identical mathematical formulation, the
algorithms are valid for both CIS QIS and SPAD QIS. In fact,
the reported algorithms seldom distinguish themselves based
on the particular technology [142] and [150].

A. Estimation for 1-Bit and Multibit QIS Signals

The basic building block of QIS signal processing is to
consider Poisson (H ) by ignoring the dark current and read
noise. The ADC (or simply a threshold mechanism) will turn
the measured voltage into a quantized random variable Y
depending on the bit depth. For 1-bit signals, Y is binary with
two states Y = 1 and Y = 0. The probability distribution
of Y is P[Y = 1] = 1 − e−H and P[Y = 0] = e−H .
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Fig. 11. Low-light imaging comparison between the state-of-the-art multibit QIS (Gigajot GJ01611) and CIS. (a) Comparison with a security CIS
that has a 4.76× larger pixel size under 10 mlux with 40 ms exposure time and F/1.4 lens. (b) Comparison with a cellphone CIS that has a 1.78×
larger pixel size under 128 mlux with a 44 ms exposure time and F/1.6 lens. Images from the QIS are raw without advanced image enhancement
such as denoising.

Fig. 12. Schematic illustration of the image formation of QIS. The incident
flux is sampled rapidly using a binary (or a few bit) measurement. The
goal of signal and image processing is to recover the underlying scene.
Image courtesy: [120].

For multibit signals, it can be shown that if the saturation
level is L, then [125]

P[Y = k] = H k

k! e−H , for k = 0, 1, 2, . . . , L − 1 and

P[Y = L] =
∞∑

k=L

H k

k! e−H = 1 − �L (H )

where �L(H ) = 1
�(L)

∫ ∞
H t L−1e−t dt is the upper incomplete

Gamma function which is often used to derive theoretical
results for QIS [123].

The statistical estimation of H based on Y can be carried
out using the maximum-likelihood estimation. In the case
of 1-bit measurements with L = 1, the random variable
Y follows a Bernoulli distribution. The maximum-likelihood
estimate is therefore found by maximizing the likelihood
function of a sequence of independent Bernoulli random
variables

Ĥ = argmax
N∏

n=1

(
1 − e−H

)Yn
(
e−H

)1−Yn = −log
(
1 − Y

)

where Y is the average of the sequence {Y1, . . . , YN }. For
multibit signals, the maximum-likelihood estimation does not
have a closed form. The typical workaround here is to first
evaluate the statistical expectation E[Y ] (which is a func-
tion μ(.) of the exposure H )

μ(H ) = E[Y ] = H�L−1(H ) + L(1 − �L(H ))

and construct the estimate as the functional inverse of μ

Ĥ = μ−1(E[Y ]).

Estimators constructed in such a way satisfy the so-called
mean invariance property [125].
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B. Feasibility and Performance Limit Analysis

The development of signal processing theory for QIS started
around 2009 at EPFL [127] where the focus was to understand
the oversampling nature of the problem and the corresponding
statistical properties. A major report was published in 2012
[121], where they derived the performance limit in terms of the
Cramer–Rao lower bound by analyzing the 1-bit maximum-
likelihood estimator. Then between 2012 and 2014, a series of
articles were published by Rambus [26], [128], [129] showing
the feasibility of QIS for HDR imaging.

Three major theoretical questions are of particular interest.
The first one is the noise statistics. At the sensor level, the
noise analysis reported in [15] and [25] covered most of the
essential concepts. Analysis of the multibit signals using the
incomplete Gamma function was reported in [126].

The second question is the definition of the SNR. The
output-referred SNR (the ratio between the mean E[Y ] and
the standard deviation (Var[Y ])1/2 is known to be unbounded
for 1-bit signals because the bit density will approach the
constant one as the exposure is saturated. The more appropriate
definition of the SNR is the exposure-referred SNR [15],
denoted as SNRH

SNRH = E[Y ]√
Var[Y ]

dμ

d H
.

Detailed mathematical analysis of SNRH can be found
in [125].

The third theoretical question is the analysis of the thresh-
old. Yang et al. [121] had some basic discussions but a
more comprehensive analysis was reported by Elgendy and
Chan [123]. The article shows the theoretically optimal thresh-
old and proposed an algorithm to automatically identify such
a threshold. Along this line of analysis, there are earlier
publications, such as [122], [130]. Sensor-level studies are
reported in [30] and [21].

C. From Iterative to Noniterative Algorithms

In early studies of QIS image reconstruction algorithms,
a large amount of effort was spent on formulating the like-
lihood function of the 1-bit data and solving the associated
maximum-likelihood [121], [123], [131], [132] or the maxi-
mum a posteriori estimation [135], [136]. On one hand, the
convexity of the 1-bit likelihood means that the optimization
is solvable via an appropriately chosen convex optimization
algorithm, e.g., the alternating direction method of multiplier
(ADMM) [135] and its plug-and-play variant [136]. On the
other hand, the iterative nature of these algorithms makes them
practically not favorable especially when hardware constraints
are considered.

The first noniterative 1-bit image reconstruction algorithm
was based on the concept of variance stabilizing trans-
form [137]. The idea is that if the binary measurement Yi

follows the probability distribution where P[Yi = 1] =
1 − e−H , then the sum Sn = ∑n

i=1 Yi will follow the binomial
distribution. Using a classical result by Anscombe [139],
there exists a nonlinear transformation T such that the trans-
formed variable T (Sn) will have a uniform variance. One can

Fig. 13. First noniterative 1-bit QIS image reconstruction using the
transform-denoise concept. Instead of running the maximum-likelihood
estimate and then denoise, transform-denoise blends the Anscombe
transform and denoising into the reconstruction process. Image
courtesy: [137].

then apply any off-the-shelf image denoising algorithm for
Gaussian noise to T (Sn), and then apply the inverse T −1

to recover the image [139], as shown in Fig. 13. Variance
stabilizing transform is computationally inexpensive. With a
lookup table and a built-in image denoising algorithm (such
as those in mobile phones), the image can be recovered.

Moving scenes are more challenging. If the motion is
moderate, averaging the pixels within a sliding cubicle, plus
variance stabilizing transform and denoising is often the most
cost-effective solution [137]. There are attempts trying to
segment the moving parts so that the foreground and back-
ground are processed separately [140], [141]. However, object
segmentation of 1-bit and few-bit data is as hard as solving
the original reconstruction problem. A better and more reliable
approach is to run image registration algorithms (aka optical
flow in computer vision) [142]. In general, moving scenes
remain an open challenge when the number of frames is small
and the bit depth is low.

D. Deep Learning: Designs and Challenges

As a powerful computational tool, deep learning is cur-
rently an active research area for QIS image reconstruction.
In some sense, training a deep neural network for QIS is
no different from training an image denoising network for
a CIS. Especially for a multibit QIS where L is large,
the forward image formation model is the same as a CIS.
Perhaps the only noticeable difference is the read noise where
QIS is significantly lower. Because of the (almost) identical
procedure in synthesizing data, several designs of the deep
neural networks for QIS, e.g., the QIS reconstruction network
(QISNet) [143], the U-Net [144], [145], and others [146] are
all based on off-the-shelf networks but trained with a different
data simulation process.

A more sophisticated deep neural network is a dual-encoder
network by Chi et al. [147]. In this design, the network
contains two teacher subnetworks where one subnetwork
encodes the motion and the other subnetwork encodes the
noise, as shown in Fig. 14. During training, the motion teacher
network sees a noise-free dynamic sequence, whereas the
denoising teacher sees a motion-free but noisy sequence. The
features extracted by the two teachers are used as guidance
of the student network which is supposed to generate features
similar to the teacher. By minimizing the appropriate training
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Fig. 14. Conceptual diagram of the dual-encoder student–teacher
network for reconstructing images from QIS data. Image courtesy: [147].

Fig. 15. Image reconstruction using the dual-encoder network by [147].
(Left) Input QIS data, 3-bit, and 1 frame. (Right) The reconstructed image
from eight frames. Note that the fan is moving.

loss, one can decouple the motion and noise to allow the
overall network to handle moving scenes with only a few
frames. At the core of the dual-encoder network is the concept
of knowledge distillation [148]. Theoretical analysis is an
ongoing research topic [150]. Variants of the idea have been
reported [150]. Fig. 15 shows a reconstructed image using the
dual-encoder network.

Despite the superb image reconstruction quality, deep learn-
ing approaches will still have a long journey before they can
become an integral part of the sensor. Hardware constraint is
certainly one obstacle, but even if one can run the computation
on a graphics processing unit, the generalization of the neural
network remains a question. With the huge variety of noise
conditions, scene content, and camera configurations, it is
nearly impossible to train one model and fit all scenarios.
Some attempts are made to maximize the consistency across
the noise levels [151], yet significantly more efforts are needed
to close the training–testing gap. Generative models, such
as [152], will likely have an even bigger hurdle to overcome,
as not every user would appreciate digital image hallucination.

E. Linear Inverse Problem Beyond Denoising

In some applications, QIS needs to overcome a variety
of inverse problems such as deblurring, super-resolution, and
so on. At the core of these inverse problems is the forward
modeling

y = ADC
{
CFA

{
Poisson(Ax + Hdark) + Gauss

(
0, σ 2

)}}

where the exposure is modeled by the matrix-vector Ax. Here,
A is a linear operator capturing degradations, such as blur, and
x is the underlying clean image to be estimated. (The bolded
x symbol means a vector of pixel values instead of a single
pixel.)

In the simplest case that only considers the Poisson part
(i.e., assumes zero-dark current, no read noise, no CFA, and
ADC has a large bit depth), the estimation is a minimization

x̂ = argminx1T Ax − yT log(Ax) + λR(x)

for some regularization functions R(x). The equation says
that the best estimate is found by minimizing the sum of
the Poisson likelihood and the regularization function. The
Poisson term captures the forward data fidelity, whereas the
regularization encapsulates the prior knowledge of how a good
image should look like. In signal processing, minimization of
this type is known as maximum a posteriori estimation.

Solving this minimization is nontrivial. At the very least,
the algorithm needs to invert the function handle the blur A
simultaneously with removing the Poisson shot noise. This
type of Poissonian problem has been known for a long time,
but most algorithms can only handle Poisson noise to some
extent [153]–[155]. One recent proposal is to integrate the
classical maximum a posteriori estimation with deep learning
via the so-called deep network unrolling [156], [157]. The
idea is to consider a three-operator splitting strategy in the
classical ADMM formulation [153], and then unfold the neural
network to implement the iterative procedure, as shown in
Fig. 16. The advantage of such an unfolded network is that
it uses multiple iterations to progressively deblur the image,
so that the solution trajectory will follow a smooth path and
hence a more stable solution. Fig. 17 shows a pair of real
image reconstruction results.

F. New Considerations for Color

Color processing of QIS data requires some rethinking
because the pixels are now below the diffraction limit. Design-
ing new CFAs is one direction [158], [159] where one needs
to find a good compromise between aliasing, crosstalk, and
transmittance. The current solution for QIS is to use the
so-called quad Bayer pattern where a neighborhood of 2 × 2
pixels is shared by the same color filter. Quad Bayer is gaining
popularity in major image sensor manufacturers [161]. How-
ever, since a quad Bayer pattern has a fundamentally different
frequency response than the traditional Bayer, one needs to
either completely redesign the demosaicking algorithm (and
hence the image and signal processing pipeline) or convert
the quad Bayer to Bayer.

Another challenge of processing color for QIS is the intrin-
sic Poisson statistics at low light [161]. Traditional demosaick-
ing algorithms are not designed to handle this level of noise.
One of the solutions is to demodulate the filter response of
the CFA and decouple the luma channel from the two chroma
channels. Since the luma channel has a triple SNR than the
chroma, it can be used to guide the denoising process of the
chroma channels [120].
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Fig. 16. Three-way image deblurring algorithm for Poisson problems.
The idea is to rewrite the classical ADMM algorithm into a sequence of
learnable blocks using neural networks. Image courtesy: [156].

Fig. 17. Image deblurring using algorithm unrolling [156]. (Left) Input
data, 14-bit 1-frame. (Right) Reconstructed.

Fig. 18. Application of QIS for object recognition and tracking at a photon
level of 0.71 photons per pixel. (Left) Image captured by a CIS. The
detection algorithm is the current state-of-the-art Faster R-convolutional
neural network (CNN). (Right) Image captured by Gigajot 16MP QIS
GJ01611. The detection algorithm is based on [157]. Note the improved
detection capability of the sensor–algorithm combination.

G. New Capabilities in Computer Vision

Computer vision applications such as detection, tracking,
recognition, and classification can all be performed using QIS
such as the examples shown in [141]. The layman solution here
is to first run the image reconstruction algorithm to recover the
image, and then run off-the-shelf recognition and detection
algorithms.

In the case of deep learning, one can perform the so-called
end-to-end training for both reconstruction and recognition
modules [162]. However, if the end goal is recognition, the
reconstruction can be skipped [163] because deep neural
networks today often have large enough capacities to handle
reconstruction and recognition together. For object classifi-
cation, one solution is to use knowledge distillation to pull
features of the noisy data and match it with the features of the
clean data. It was shown that without even a reconstruction
module, the recognition performance can be promising [157].
Fig. 18 shows an example of tracking an object in the dark. For

more complex scenes involving motion, advanced techniques
such as nonlocal feature polling can be added to improve the
quality of the features.

H. Bigger Signal Processing Landscape
The mathematical model and signal processing algorithms

can be borrowed from/applied to its sister technology. The
closest one is the SPAD-based image processing, where
recent works have shown a variety of applications from light
detection and ranging (LiDAR) to passive imaging [142],
[164]–[167]. Another line of work is the first photon imaging,
where the goal is to perform time-of-time using one or few
photons [168], [169]. On the algorithmic side, seeing in the
dark has been a major research thrust in computer vision [170],
[171]. The idea is that when the scene is not completely dark,
the raw sensor data will contain enough information for image
recovery.

As far as applications are concerned, QIS is a natural option
for a variety of imaging applications in scientific imaging,
medical imaging, space imaging, security and defense, and
low-light photography. The choice of the application will
determine the corresponding optics, sensors, and the image
processing algorithms. One distinction that should be made
is who is going to consume the image data. If it is for
human consumption, e.g., photography, then image quality
will be the highest priority. If it is for machine consumption,
such as automated inspections in advanced manufacturing or
autonomous vehicles, then features extracted from the data
would matter more than the actual image. Given the flexibility
and freedom in processing the QIS data in the space-time
volume, the different applications should receive different
treatments.

V. CONCLUSION

The QIS concept started as a method to address the impact
of pixel shrink on CIS, and the use photoelectron counting to
create an image. SPAD QIS was an early obvious choice for
implementation except for pixel pitch and photon number reso-
lution. Implementation of CIS QIS revealed a path to DSERN
for photon counting. SPAD QIS may become commercially
viable based on recent progress with continued pixel shrink,
including shrink of any in-pixel counter. Technologies devel-
oped for CIS QIS for deep subelectron read noise are finding
their way into mainstream CIS devices for ultralow-light
imaging with small pixels. Improvement in read noise to the
0.15e− rms level for all pixels remains a future goal, either
through an increase in CG or lower SF noise. Adoption of the
early 1bQIS concept will depend on on-chip data compression
and processing, as well as off-chip readout data rates, and
will be application-dependent in implementation. QIS devices
may also find use in future systems where photon analysis
by wavelength, polarization, arrival time, and other properties
reduces an otherwise sufficient number of total photons to very
sparse photon numbers making photon counting with high
accuracy important. Photon counting may also be important
in quantum information systems for the optical readout of
quantum-computer qubit states and for quantum communi-
cations, where pixel spatial density and readout speed will
become increasingly important.
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