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Abstract—The Poisson statistics of photon arrival rates 
are applied to the imaging performance of the Quanta 
Image Sensor (QIS) concept. Signal and noise as a 
function of exposure is analyzed and we find SNR only 
obeys the square-root law under sparse exposure. The D-
log H characteristic of the QIS is quantified. Linearity and 
dynamic range are also investigated.  
 

I. SIGNAL 
Photons are emitted from light sources at some average 

rate on longer time scales, but randomly on shorter time 
scales and their emission from most light sources is well-
described by the Poisson process. Through various 
attenuating and reflective processes, the photons arrive at 
a photodetector where they are absorbed and converted to 
photoelectrons and collected with some quantum 
efficiency (QE). Both the photon stream entering the 
photodetector and the photoelectrons collected by the 
photodetector are described by the Poisson process. This 
means that the average number of arrivals over some time 
interval 𝜏 depends only on the average arrival rate 𝜙 (e.g. 
photoelectrons per second per photodetector) and the 
length of the interval τ, and in fact, just on the product 𝜙𝜏 
that we will call the quanta exposure H. A quanta 
exposure of H means H photons or photoelectrons arrive 
at the photodetector on average over the interval 𝜏.  

In the Poisson process, the probability P[k] of k arrivals 
in the interval 𝜏 with average arrival rate 𝜙 is given by 
[1]: 

𝑃[𝑘] =  
𝑒−𝐻 𝐻𝑘

𝑘!
      (1) 

 
Thus, the probability of no arrivals (k=0) is simply: 
 

𝑃[0] =  𝑒−𝐻        (2) 
 
The probability of at least one arrival (k>0) is simply 
given by: 

𝑃[𝑘 > 0] = 1 − 𝑃[0] =  1 − 𝑒−𝐻        (3) 
 

 
Fig. 1. A Monte-Carlo simulation of arrivals per interval is shown below 

for H=1 for 256 intervals. It is seen that many intervals have multiple 
arrivals and some have no arrivals. 

The Quanta Image Sensor (QIS) [2] is organized as an 
array of photodetectors each sensitive to a single 
photoelectron. While in practice the photodetector may 
continue to be sensitive to multiple photoelectrons, 

subsequent circuitry discriminates the output to two 
binary states: either a “0” meaning no photoelectron, or a 
“1” meaning at least one photoelectron. These highly 
specialized photodetectors are referred to as “jots.” [3] 
The QIS belongs to a class of sensors that could be called 
photon-counting or photoelectron-counting sensors and 
several papers have addressed photon statistics with 
regard to this class of sensor. [4-6] 

Each jot has an integration period τ during which one 
or more photoelectrons might be collected. After the end 
of the integration period, the state of the jot is read out. It 
is then reset and the process starts again, typically with 
the same integration period τ. Note that the integration 
period τ could be less than the time between readouts 
since the jot could be reset at some time between readout 
cycles.  

Let the jot have just two states at the end of the 
integration period, J0 or J1, corresponding respectively to 
the absence or presence of at least one photoelectron. The 
probabilities of these states P[J0] and P[J1] are given by 
equations (2) and (3) respectively. 

In an ensemble of M jots uniformly illuminated, let the 
expected number of jots in state J0 be given by 𝑀0: 

 
𝑀0 = 𝑀 ∙ 𝑃[𝐽0] = 𝑀 𝑒−𝐻        (4) 

 
and the expected number of jots in state J1 be given by 
𝑀1: 

𝑀1 = 𝑀 ∙ 𝑃[𝐽1] = 𝑀 ∙ [1 − 𝑒−𝐻 ]       (5) 
 
For sparse exposure (H ≲ 0.1), the expected number of 

jots in the state J1 is given by the linear relationship: 
 

𝑀1 ≅ 𝑀𝐻       (6) 
The J1 density (M1/M) at full exposure1 (H=1) is just 
63%. At 2x overexposure (H=2), it is 86%, and at 5x 
overexposure (H=5) the density reaches 99.3%. Density is 
shown in Fig. 2 as a function exposure. 
 

 
Fig. 2. D-logH exposure characteristic of the Quanta Image Sensor. 

                                                 
1 Essentially corresponding to a saturation exposure if arrival rate was 
steady on an instantaneous basis – that is, no shot noise. 
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As was discussed qualitatively in previous papers [7,8] 
this D-log H “S-shaped curve” is quite similar to the 
famous D-log H plot for photographic plate densities 
following light exposure and development, as reported by 
Hurter and Driffield in 1890 [9]. In the case of 
photographic film, it means that film response is non-
linear and can tolerate highlights much better than a 
conventional sensor – a feature desired by classic 
photographers and cinematographers. For conventional 
sensors some of this non-linear response can be encoded 
by using an appropriate value of γ in the postprocessing of 
the image. Nevertheless, the high end of the non-linear 
response of film has been hard to match even in HDR 
solid-state image sensors without introducing artifacts. 

 
II. NOISE 

To calculate the noise 𝜎1 in M1, the variance of a 
binomial distribution needs to be used. In this case we 
have: 

𝜎12 = 𝑀 ∙ 𝑃[𝐽0] ∙ 𝑃[𝐽1]       (7) 
or 

𝜎12 =
𝑀0𝑀1

𝑀
       (8) 

or 
1
𝜎12

=
1
𝑀0

+
1
𝑀1

       (9) 

 
since M = M0 + M1. As an example, M1 and 𝜎1 were 
calculated using these formulas and also simulated using 
Monte Carlo methods for M = 256 over 100 trials. The 
results are shown below in Fig. 3. It can be seen that the 
noise is suppressed as the illumination approaches full 
exposure conditions and diminishes quickly for 
overexposure. In essence, the noise is “squeezed” since 
the number of empty jots is small, and only these can 
contribute to a variance in M1.  
 

Fig. 3. Signal and noise as a function of exposure 
 
The noise has a maximum value of: 

𝜎1𝑚𝑎𝑥 =  
1
2√

𝑀       (10) 
which occurs at a total exposure of 𝐻 = ln 2 or when the 
jots are half filled (M0=M1=M/2). It is noted that the noise 
is already squeezed by a factor of √2 from what it would 
be if one just used the classical shot noise equation, even 
though the jots are only “half full.” 

 
 
 

III. SNR 
Signal to noise ratio (SNR) for the QIS can be readily 

calculated. The signal S is M1. The noise is 𝜎1 and SNR is 
given by: 

𝑆𝑁𝑅 =  �
𝑀1

1 −𝑀1/𝑀
       (11) 

Generally we are more interested in the exposure-
referred SNR, SNRH, since when the noise is squeezed the 
apparent SNR artificially rises. SNRH is given by: 

 

𝑆𝑁𝑅𝐻 =  
𝐻

𝜎1
𝑑𝐻
𝑑𝑆

       (12) 

From Eq. 5 we obtain: 
 

𝑑𝐻
𝑑𝑆

=
1

𝑀𝑒−𝐻
       (13) 

 
Thus, SNRH is given by: 

𝑆𝑁𝑅𝐻 = √𝑀  
𝐻

√𝑒𝐻 − 1
       (14) 

 
Fig. 4 shows exposure-referred SNRH as a function of 

exposure in the QIS for M = 4,096. SNRH peaks at about 
50, or 34 dB at an exposure 1<H<2 and then drops off. 
For the linear, sparse-exposure range, SNRH reaches 
approximately 20 or 26dB. This suggests that operating 
the QIS is the linear regime may require more than 4,096 
jot samples per pixel to achieve good image quality over 
reasonable exposure latitude. 
 

 
Fig. 4. SNRH as a function of exposure for M = 4,096 jots 

The drop off in SNRH is due to the flattening of the M1 
response so that the same noise would correspond to more 
uncertainty in exposure, hence lower SNR despite the 
squeezed noise. 

Also shown in Fig. 4 is the hypothetical case where the 
QIS response is linear (S=MH) until it abruptly saturates. 
The total arrival count N is shown. Its corresponding 
noise is the classic shot noise √𝑁 and since the response 
is linear, the SNRH is also equal to √𝑁. 

The QIS SNRH is lower than this hypothetical case by 
just 2.35 dB at full exposure yet gains over 10 dB in 
additional exposure latitude (to ~3x overexposure). 

 
 



 

IV. DYNAMIC RANGE 
Dynamic range, DR, is defined as ratio of maximum 

exposure Hm that just saturates the sensor (or less, 
depending on linearity requirements) and the exposure-
equivalent temporal noise Hn level in the dark. 

 

𝐷𝑅 = 20 log �
𝐻𝑚
𝐻𝑛

�        (15) 

 
The dark temporal noise consists of read noise entering 

the column sense amplifier and dark current counts. To 
calculate its effect we consider the probability distribution 
of read signals for no photoelectron (state J0) and with a 
photoelectron (state J1) as shown below in Fig. 5. 

 

 
Fig. 5. Read signal probability distributions for states J0 and J1 with 

read noise of 0.5 e- rms. 

  The comparator threshold is set at 0.5 e- (e.g., 5 mV in 
the case of 10 mV/e- total gain).  The total probability 
that state J0 is misread as state J1 is the solid blue area 
shown by the arrow.  Similarly, the probability that state 
J1 is misread as state J0 is shown by the green hatched 
area.  Integrating the two normal distributions gives us the 
QIS bit error rate (BER) due to signal chain read noise:  

 

𝐵𝐸𝑅 =
1
2
𝑒𝑟𝑓𝑐 �

1
√8𝑛𝑟

�        (16) 

 
where 𝑛𝑟 is the read noise in e- rms. BER is shown as a 
function of read noise in Fig. 6. 
 

 
Fig. 6. Bit Error Rate vs. Read Noise for the QIS 

From Fig. 6, a reasonable target for read noise nr is 
about 0.15 e- rms yielding  BER ≃ 1/1000.  For an 
estimated voltage noise of 150 uV rms a high conversion 
gain (e.g., 1 mV/e-) is required. In the dark there is no 
population of 1’s turning to 0’s - we are looking for just 

0’s that turn to 1’s, so the same BER value is obtained. 
For nr = 0.15 e- rms we obtain BER of 0.04% meaning we 
can expect 1.6 incorrect bits out of every 4096. That 
corresponds to an exposure-equivalent noise of Hnr 
=0.0004 since MHnr = 1.6 for M=4096. Generally, then, 
 

𝐻𝑛𝑟 =  
1
2
𝑒𝑟𝑓𝑐 �

1
√8 𝑛𝑟

�        (17) 

 
where nr is measured in electrons r.m.s. and is less than 
unity, not including dark current. The noise Hnr is a very 
steep function of nr. For nr =0.20 e- rms, Hnr grows 14x to 
0.006 and for nr = 0.10 e- rms, Hnr reduces 1500x to 
0.0000003. In essence, read noise is likely either to be a 
large problem, or no problem. 

Dark current is difficult to predict, but generally we can 
expect levels similar to those in present day CMOS image 
sensors. Jot areas are smaller, voltages lower but field-
bunching stronger and doping higher, among other 
factors. For example, SOA is 15 e-/s at 60C for 1.4 um 
pixel [10]. A jot that is 1/100th the area might reasonably 
be expected to have a dark current of 0.5 e-/s. For a 16x 
time-oversampled QIS, the integration interval might be 2 
msec so the expected number of dark carriers is 0.001. 
This is 4 dark bits out of every 4096 and best considered 
temporal noise. We can assign an exposure-equivalent 
dark current Hd and set it to 0.001 in this estimate. Note 
Hd depends on the integration time since exposure is 
defined as the number of expected arrivals over the 
integration interval. 

The dynamic range of the QIS extends from the greater 
of Hnr and Hd, to about Hm=5 according to Fig. 4 yielding 
a dynamic range of approximately 20 log (5.0/0.001) = 74 
dB. For good linearity, Hm might need to be as low as 0.1 
with a lower dynamic range of 40 dB in this example. 
 

V. HIGH DYNAMIC RANGE 
As in conventional CMOS image sensors [11], dynamic 

range can be improved by combining different integration 
periods. In Fig. 4 the transfer characteristic and SNR for a 
QIS device was shown, where nominally the 4096 jot 
samples could be considered 16x16 in space, and 16 time 
slices, with all samples having the same integration time. 
In that case, the SNR peaked at about 51. Instead, just as 
an example, we could break the 16 time slices up into 4 
groups with 4 slices each, each group having a different 
integration time for the time slices. For example, the first 
group of slices could have an integration time of 1 
(normalized to the readout scan time), the 2nd 0.2, the 3rd 
0.04, and the 4th 0.008 – basically 5x difference between 
each set. The total readout time for the QIS would be the 
same, but the exposure period would be different for each 
group.  

This example is illustrated in Fig. 7. The signal output 
from each group (assuming they are summed) is shown as 
a function of exposure, along with the noise as a function 
of exposure. The total noise is also shown. Finally, the 
exposure referred SNRH is shown. 

 



 

 
Fig. 7. Illustration of high dynamic range exposure with QIS. Maximum 
exposure Hm is extended about 125x or 42dB. Exposure-referred SNRH 

is relatively flat at about 30 dB. 

The maximum exposure has been extended to Hm≅400, 
an extension of 80x or 38 dB to a total DR of 112 dB. 
SNRH is relatively flat between H=1 and H=400 with a 
value of ~30 or 30 dB, representing a drop of about -4dB 
from its single integration interval peak.  

Summing the outputs is one way of creating the HDR 
output signal, but other methods with improved linearity 
can also be considered, for example by weighting the sum 
of each group before summing the group signals. 

Generally for HDR operation, the shape of the SNR 
curve and its rough value is traded against DR through the 
choices of integration intervals and number of slices in 
each group. Higher DR comes at the expense of lower 
SNR, at least over some exposure range. 

 
VI. CONCLUSION 

The QIS behaves differently than conventional image 
sensors with respect to exposure linearity and noise 
characteristics due to the binary nature of jot outputs. 
Under sparse exposure, the QIS is linear and has SNR 
characteristics similar to that of conventional image 
sensors. For higher exposures, the non-linearity can be 
exploited to yield film-like qualities and high dynamic 
range with nearly flat exposure-referred SNR.  
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