CHARGE-COUPLED DEVICES (CCDs)

CCD Operation

Charge-coupled devices shift charge one step at a time to a common output amplifier

CCDS Are a Mature Technology

• DALSA 25 Mpixel sensor

© ER FOSSUM

- Fabrication process tailored for high quantum efficiency
- All charge readout through a single amplifier so no fixed pattern noise (offsets).
- Ability to add charge in charge domain without noise good for some signal processing (e.g. time-delay-integration or TDI scanners).
- Incumbent technology (over 30 years of development)

- Requires high charge transfer efficiency
 - Special fabrication process adds cost
 - Larger voltage swings, different voltage levels
- Difficult to integrate on-chip timing, control, drive and signal chain electronics
 - Process integration increases cost, reduces yield
 - Large capacitances require high current levels
- Requires timing generator chip, driver chips, signal processor, ADC and interface chips
- System power in 0.5-2 Watt range
- Architecture yields serial access to image data

Total CCD Camera Power is High

CCD imaging systems require many off-chip components

CMOS IMAGE SENSOR HISTORY

Photobit TECHNOLOGY Short History of CMOS Image Sensors

1960's Early work on MOS imaging devices
They don't work too well due to state of the art of MOS

- 1970's CCDs work better than MOS devices
- 1980's Limited work on MOS/CCD imagers
- 1990's CMOS passive pixels commercialized, low performance
- 1993 First CMOS APS demonstrated (28x28) by JPL
- 1994 CMOS APS performance comparable to CCDs
- 1995 CMOS APS as large as 1Kx1K demonstrated
 - Photobit formed by JPL team to commercialize CMOS APS
- 1996 Photobit demonstrates high performance CMOS APS with on-chip ADC at video rates
- 1997 Photobit reports world's first high performance digital cameraon-a-chip (Stanford Hot Chips Symposium)

Technology Acceptance

- CMOS state of the art is ripe for image sensors
 - Design rules permit competitive pixel sizes
 - Defects and contamination well controlled
 - Threshold voltages stable and fairly uniform
 - And now foundries offer specialized image sensor modules
- Customers demand low power, miniaturized systems-on-a-chip
- Circuit techniques developed for high performance
 - Active pixel provides gain in pixel and lower noise
 - Use of double-correlated sampling and double-delta sampling on-chip removes temporal & fixed pattern noise
 - Column parallel architecture permits low analog bandwidths to reduce noise and artifacts and maintain high frame rate.
 - Low power imaging circuit techniques reduce power to mW levels

Advantages over CCDS

- CMOS Camera-on-a-chip technology is <u>better</u> than CCDs because:
 - Much lower power important for portable applications
 - System-on-a-chip integration allows smaller cameras
 - Lower cost of sensor chip <u>and</u> fewer components in camera
 - Easy digital interface for faster camera design & time to market
 - Less image artifacts no blooming or smear, with same sensitivity
 - Higher dynamic range for security and auto applications
 - Digital output for faster readout speeds and frame rates
 - Direct addressing of pixels allows electronic pan/tilt/zoom
 - Faster design cycles means faster evolution path