CMOS Image Sensors: Tech Transfer from Saturn to your Cell Phone

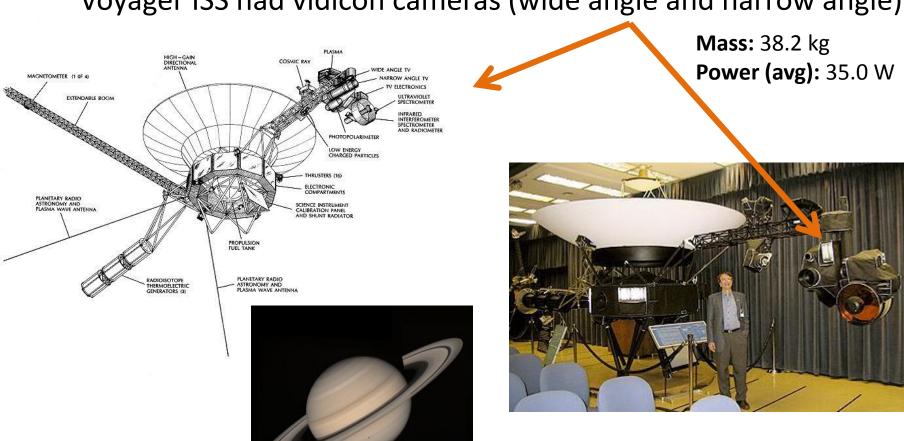
Eric R. Fossum

Thayer School of Engineering at Dartmouth

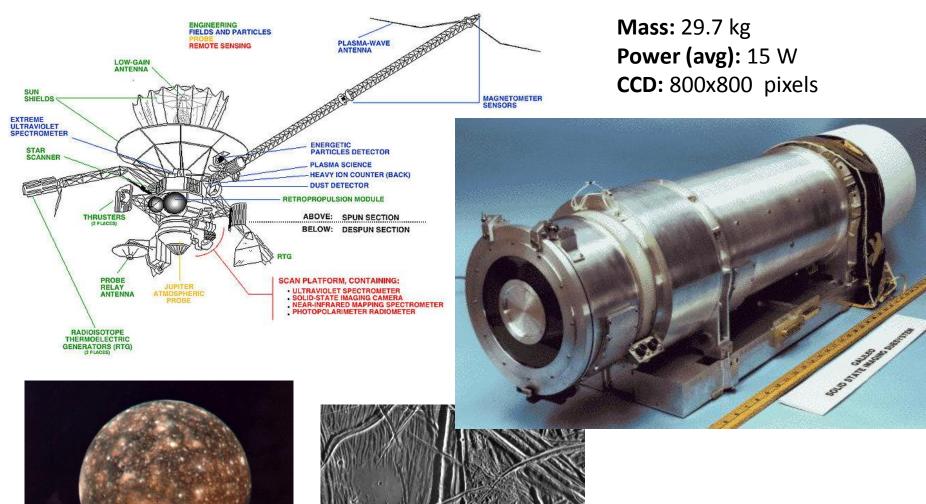
National Academy of Inventors 2nd Annual Conference, February 22, 2013

CMOS Image Sensors: Tech Transfer

the US Space Program from Saturn to your Cell Phone


Eric R. Fossum

Thayer School of Engineering at Dartmouth

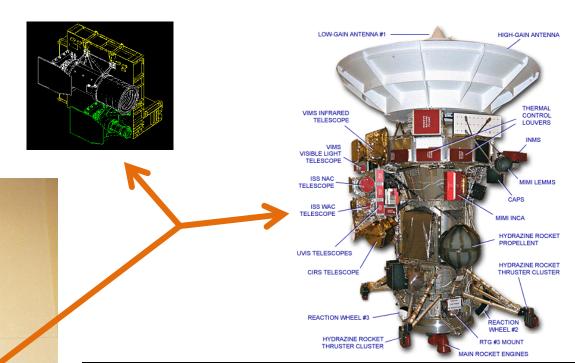

National Academy of Inventors 2nd Annual Conference, February 22, 2013

Step 1 "Necessity is the Mother of Invention"

Voyager ISS had vidicon cameras (wide angle and narrow angle)

Galileo SSI had solid-state CCD cameras (wide angle and narrow angle)

Callisto

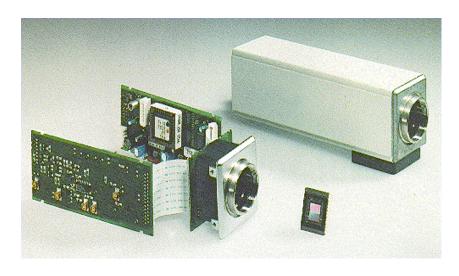

Europa


Cassini ISS has solid-state CCD cameras (wide angle and narrow angle)

Mass: 57.83 kg

Power (avg): 30.0 W

CCD: 1024x1024 pixels


NASA's Administrator Daniel Goldin "Faster, Better, Cheaper"

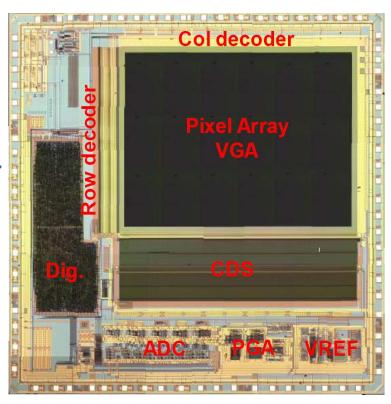
Need to Miniaturize Cameras On Future Spacecraft

Smaller payload mass = Smaller rockets Smaller payload volume = Less radiation shielding (less mass) Less power = Smaller power generation on-board

Step 2 Invent a New Technology

CCD cameras have many components and consume significant power.

BUT, the CCD is not amenable to electronics integration


Step 2 Invent a New Technology

CCD cameras have many components and consume significant power.

BUT, the CCD is not amenable to electronics integration

CMOS Active Pixel Sensor
With Intra-Pixel Charge Transfer
Camera-on-a-chip

Most of the JPL Team

Advanced Imager Technology Group, Jet Propulsion Laboratory, California Institute of Technology 1995 Back row: Roger Panicacci, Barmak Mansoorian, Craig Staller, Russell Gee, Peter Jones, John Koehler Front row: Robert Nixon, Quisup Kim, Eric Fossum, Bedabrata Pain, Zhimin Zhou, Orly Yadid-Pecht

Step 3 Technology Transfer

To fulfill a secondary NASA mission to strengthen US Industry JPL/Caltech signed Technology Cooperation Agreements with

- AT&T Bell Labs
- Kodak
- Schick Technologies (startup)

And other agreements/visits with

- National Semiconductor
- Motorola
- Intel
- EG&G Reticon
- etc.

Step 3 Technology Transfer

To fulfill a secondary NASA mission to strengthen US Industry JPL/Caltech signed Technology Cooperation Agreements with

- AT&T Bell Labs
- Kodak
- Schick Technologies (startup)

And other agreements/visits with

- National Semiconductor
- Motorola
- Intel
- EG&G Reticon
- etc.
- ⇒ Entrenched industry moves slowly in adopting new technologies so in February 1995 we founded Photobit Corporation to commercialize the CMOS image sensor technology ourselves

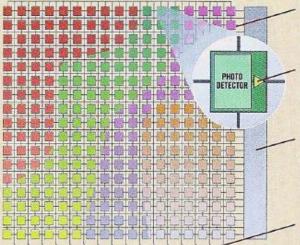
Step 4 Get a Lucky Break

capturing images has very bright prospects, indeed

et ready for the camera-on-a-chip. Since the 1970s, camera makers have dreamed of a one-chip camera containing all the components necessary to take a snapshot or make a movie. With all the smarts on one chip instead of several, designers figure they could make a camera small and cheap enough to open vast new markets for everything from dolls that "see" to rearbumper cameras that would help drivers

Such devices are impractical with today's standard electronic image sensor. It's called a CCD, for charge-coupled device, and it's at the heart of every fax machine and camcorder. Japanese powerhouses such as Sony, Matsushita, and NEC churn out millions a year. CCDs offer good image quality. But they are costly, power-hungry, and-with the accessory chips they require-bulky.

TEAMWORK. Now, the one-chip dream appears on the verge of being fulfilled, thanks to three inventors from NASA's Jet Propulsion Laboratory at California Institute of Technology in Pasadena. The leader is Eric R. Fossum, 37, who was regruited in 1990 from an associate | from timing circuits to soom and anti-


cost much less than CCDs. One chip can | ter for Space Microelectro conventional incorporate all manner of electronic controls that are usually on multiple chips,

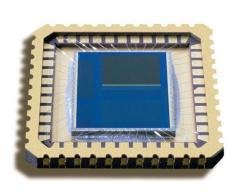
gy at JPL. "For them, it" leapfrog the Japanese."

A NEW KIND OF **ELECTRONIC** EYE NASA's Jet

Propulsion Laboratory is developing an "active pixel sensor" for smaller, cheaper cameras. The sensor rivals charge-coupled devices, or CCDs. Here's how it works:

DATA- JET PROPULSION LABORATORS

- 1 Light falls onto tiny PIXELS and is converted into electrons stored in wells called capacitors.
- 2 Each pixel has its own AMPLIFIER. In contrast, CCDs use a lot of power to drag electrons in a bucket brigade that ends at a single amplifier.
- 3 The amplifiers will be switched on and off by TIMING AND CONTROL CIRCUITRY that's right on the chip. In ordinary CCDs, those functions are on other chips.
- 4 Voltages from the pixels go through an ANALOG-TO-DIGITAL CONVERTER. CCDs require separate converter chips.


March 6, 1995 Business Week article

Step 5 Perspiration Phase

1995-2001 Photobit grows to about 135 persons

- Self funded with custom-design contracts from private industry
- Important support from SBIR programs (NASA/DoD)
- Later, investment from strategic business partners to

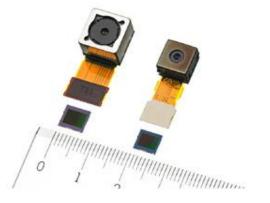
The Photobit Team Circa 2000

Step 6 Miller Time

2001 – Photobit acquired by Micron Technology

Meanwhile, by 2001 there were many competitors emerging in the CMOS image sensor business due in part to the earlier efforts to promote the transfer the technology.

Examples: Toshiba, ST Micro, Omnivision


Later, came Sony and Samsung (now #1, #2 in worldwide market)

Step 7 The Technology Has a Life of its Own

- Today, over 2 billion camera phones are manufactured each year that use the CMOS image sensor technology we invented at JPL, or more than 60 cameras per second, 24/7/52
- Semiconductor sales of CMOS image sensors exceeded \$7B in 2012.
- Caltech has successfully enforced its patents against all the major players.
- NASA is now just adopting the technology for use in space.

Siimpel MEMS AF 2 Mpix camera ~2007

16Mpix camera modules From Sony ~2012

Endoscopy Camera ~2012

New Technology Invariably Brings New Social Issues

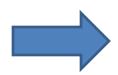
Instant communications (e.g. Facebook)

Rapid Social Change (Arab Spring)

Visual overload (e.g. Japanese Tsunami)

Security v. Privacy

Inappropriate use



New Weapons

Summary

Invention and Promise

+15 years

From the Voyager Spacecraft

To a Fantastic Voyage

